GEOTECHNISCHES GUTACHTEN

- Voruntersuchung gemäß DIN 4020 -

Projekt-Nr.: P23519

VORGANGS-NR.: 212698 . 1 . 2 . -EU

DATUM: 04.09.2025

BAUVORHABEN: Bebauungsplan Nr. 163

Grundschule Süd Lerchenfeld

Erdinger Straße 90 85354 Freising

FLURNUMMERN: 2251; 2259/6; 2260/4; 2269; 2331; 2331/1;

2331/2; 2332; 2333; Gemarkung Freising

AUFTRAGGEBER: Stadt Freising

Amt 65 Hochbau Amtsgerichtsgasse 6 85354 Freising

Dieses Gutachten ersetzt die bisherige Version mit Stand vom 18.03.2024 (Vorgangs-Nr.: 212698.1.1.-EU)

INHALTSVERZEICHNIS

١.	Aligemeines	5
1.1	Vorgang und Auftrag	5
1.2	Bearbeitungsunterlagen	6
1.3	Örtliche Situation und Bauvorhaben	6
2.	Geologische Situation	7
3.	Untersuchungen und Ergebnisse	8
3.1	Kleinbohrungen	8
3.2	Rammsondierungen	9
3.3	Bodenmechanische Laborversuche	. 10
4.	Grundwassersituation	. 11
4.1	Grundwasserstände	. 11
4.2	Betonaggressivität des Grundwassers	. 13
5.	Stellungnahme	. 13
5.1	Zum Baugrund	. 13
5.1.1	Erdbebenklassifizierung	. 13
5.1.2	Bodenklassifizierung	. 14
5.1.3	Bodenkennwerte zur erdstatischen Berechnung	. 15
5.2	Zur Gründung	. 15
5.2.1	Unterkellerte Bauweise	. 16
5.2.2	Nicht unterkellerte Bauweise	. 17
5.3	Erschließungsmaßnahmen	. 20
5.3.1	Ver- und Entsorgungsleitungen	. 20
5.3.2	Verkehrsflächen	. 20
5.4	Zur Bauausführung	. 21
5.5	Bauzeitliche Wasserhaltung	. 26

5.6	Niederschlagswasserversickerung	.27
5.7	Hydrothermische Nutzung	. 29
6.	Altlastensituation	. 29
6.1	Boden	. 29
6.2	Kampfmittel	.31
6.3	Bau- und Bodendenkmäler	.31
6.4	Radon	.32
7.	Schlussbemerkung	.32

212698 . 1 . 2 . Seite 3 von 33

TABELLENVERZEICHNIS

Tabelle 1: Grunddaten der Kleinbohrungen	8
Tabelle 2: Grunddaten der Rammsondierungen	10
Tabelle 3: Ergebnisse Bodenmechanik	11
Tabelle 4: Grundwasserstände GWM vom 07.03.2024	12
Tabelle 5: Bautechnische Bodenklassifizierung	14
Tabelle 6: Charakteristische Bodenkennwerte	15
Tabelle 7: Charakteristische Pfahlkennwerte	18
Tabelle 8: Einstufung der Feststoffproben	30

ANLAGENVERZEICHNIS

Lageplan, unmaßstäblich	Anlage 1
Bohrprofile	Anlage 2
Sondierprofile	Anlage 3
Kornverteilungskurven	Anlage 4
Umwelttechnische Prüfberichte	Anlage 5
Schichtenverzeichnisse Grundwassermessstellen	Anlage 6

212698 . 1 . 2 . Seite 4 von 33

1. Allgemeines

1.1 Vorgang und Auftrag

In Freising ist an der Erdinger Straße 90 auf dem Grundstück mit den Flurnummern 2251, 2259/6, 2260/4, 2269, 2331, 2331/1, 2331/2, 2332 und 2333 der Gemarkung Freising der Neubau einer Grundschule geplant. Hierzu wird der Bebauungsplan Nr. 163 aufgestellt. Angaben zum Gebäudenull oder Gründungskoten liegen nicht vor.

Die Grundbaulabor München GmbH wurde am 09.11.2023 von der Stadt Freising beauftragt, zu dem geplanten Bauvorhaben ein Geotechnisches Gutachten nach DIN 4020 zu erstellen. Da noch keine konkreten Architektenpläne vorliegen handelt es sich um eine Voruntersuchung.

Die geplanten Baumaßnahmen sind voraussichtlich der Geotechnischen Kategorie 3 nach DIN 4020 zuzuordnen.

Dieses Gutachten ersetzt die bisherige Version mit Stand vom 18.03.2024 (Vorgangs-Nr.: 212698.1.1.-EU)

Das vorliegende Gutachten beinhaltet folgende Schwerpunkte:

- Geotechnische Erkundung von Aufbau und Eigenschaften des Baugrundes mit direkten und indirekten Baugrundaufschlüssen
- Ansprache und Klassifizierung der Bodenschichten gemäß DIN 4022, DIN 18196 und DIN 18300 sowie der ZTVE-StB 17
- Angabe von Bodenkennwerten für erdstatische Berechnungen
- Stellungnahme zur Bauwerksgründung, den zulässigen Belastungen des Baugrundes und zur Bauausführung

212698 . 1 . 2 . Seite 5 von 33

- Aussagen zur allgemeinen Grundwassersituation, zu Bemessungswasserständen und ggf. zur Wasserhaltung
- Orientierende Aussagen zur Niederschlagswasserversickerung
- Orientierende Aussagen zur Altlastensituation

1.2 Bearbeitungsunterlagen

- Bebauungsplan Nr. 163 "Grundschule Süd Lerchenfeld" mit Teiländerung der Bebauungspläne mit Grünordnung Nr. 86 "Gewerbegebiet Erdinger Straße / A92" und Nr. 86a "Gewerbegebiet Erdinger Straße / A92 (2. BA)", M 1: 5.000 (Stand 11.07.2025)
- Leitungspläne, M 1 : 500 und M 1 : 1.000 (Stand 30.11.2023)
- Geologische Karte von Bayern, M 1: 25.000, Blatt L 7536 Freising Süd, Bayerisches Geologisches Landesamt München, 1959

1.3 Örtliche Situation und Bauvorhaben

Das Baugebiet befindet sich im Südosten von Freising an der Erdinger Straße im Gewerbegebiet Clemensänger, Stadtteil Lerchenfeld. Es hat eine Gesamtfläche von ca. 37.000 m² und trägt ganz oder teilweise die Flurnummern 2251, 2259/6, 2260/4, 2269, 2331, 2331/1, 2331/2, 2332 und 2333 der Gemarkung Freising. Im Osten grenzt es an ein Wohngebiet, im Norden und Süden befinden sich Gewerbegrundstücke. Im Westen befinden sich landwirtschaftlich genutzte Flächen.

Das Geländeniveau liegt ca. zwischen Kote 440,7 m ü. NHN und Kote 441,2 m ü. NHN.

212698 . 1 . 2 . Seite 6 von 33

Aktuell wird das Grundstück zu ca. 2/3 landwirtschaftlich genutzt. Auf dem östlichen Grundstücksbereich befindet sich eine Außerstelle der Berufsschule und Fachakademie für Sozialpädagogik Freising.

Zum geplanten Bauvorhaben liegen keine konkreten Angaben vor. Neben dem Schulgebäude sind auch eine Sporthalle, eine Fläche für Nebenanlagen in Form von Stellplätzen für Kraftfahrzeuge, Fahrräder, Tretroller sowie in Form von Trafostationen und zur Müllaufbewahrung, ein Verkehrsübungsplatz und zwei Außensportfelder geplant.

2. Geologische Situation

Die Geologische Karte von Bayern 1: 25.000, Blatt 7636 Freising Süd weist im Bereich des zu untersuchenden Grundstückes fluviatile Isarablagerungen der sogenannten Lerchenfeld-Stufe aus. Die Ablagerungen wurden während des Holozäns von Schottern aufgebaut, die von sandigen Aue- und Flusslehmen wechselnder, zum Teil erheblicher Mächtigkeit, überdeckt werden. Es können auch Torfablagerungen auftreten. Am Rande des heutigen Bettes der Isar treten Sande größerer Mächtigkeit auf, in welche dünne schwach humose Horizonte und Schmitzen sowie Holzfragmente eingeschaltet sind. Zur Hochwasserregulierung wurden auf diesen Schichten häufig künstliche Aufschüttungen aufgebracht. Die Schotter liegen in der Regel direkt auf den tertiären Böden der Oberen Süßwassermolasse auf. Dieses Schichtenpaket, das allgemein als "Flinz" bezeichnet wird, tritt am Dom- und am Weihenstephaner Berg zutage. Es besteht aus Mergel, Sand und Kleinkies und reicht bis in mehr als 300 m Tiefe unter Terrain.

212698 . 1 . 2 . Seite 7 von 33

3. Untersuchungen und Ergebnisse

3.1 Kleinbohrungen

Zur ortspezifischen Beurteilung der Baugrundverhältnisse wurden am 22.01.2024 insgesamt fünf unverrohrte, gerammte Kleinbohrungen (Ø 100 mm) nach DIN EN ISO 22475 abgeteuft.

Die Lage der Kleinbohrungen ist dem Lageplan in Anlage 1 zu entnehmen.

Die Grunddaten der Kleinbohrungen (**KB**) sind in Tabelle 1 zusammengefasst:

Tabelle 1: Grunddaten der Kleinbohrungen

Kleinbohrung	Ansatzhöhe [m ü. NHN]	Tiefe [m]	Bohrendteufe [m ü. NHN]
KB1	441,08	7,0	434,08
KB2	440,97	7,0	433,97
KB3	440,96	7,0	433,96
KB4	440,71	7,0	433,71
KB5	441,24	5,0	436,24

Der Aufbau des anstehenden Bodens wurde über die erhaltenen Bohrgutproben nach DIN 4022 beschrieben und die Schichtenfolge ist als Bohrprofil in Anlage 2 gemäß DIN 4023 dargestellt.

Der Bodenaufbau stellt sich im Bereich der abgeteuften Kleinbohrungen wie folgt dar (alle Angaben zur Tiefe beziehen sich auf Geländeoberkante bzw. Bohransatzpunkt):

212698 . 1 . 2 . Seite 8 von 33

Im Baufeld steht zunächst ein Oberboden- bzw. Ackerbodenhorizont an. Dieser reicht bis in eine Tiefe von maximal 0,8 m und enthält Fremdbestandteile in Form von Ziegelbruch. Im Liegenden folgen Aueböden die zum Teil stark humos sind. Lokal wurden Torfböden und auch Auffüllböden angetroffen. Ab einer Tiefe von 1,6 m bis 2,6 m unter Ansatzpunkt folgen bis zur Bohrendteufe in maximal 7 m Tiefe quartäre Kiessande.

3.2 Rammsondierungen

Zur Erkundung der Lagerungsdichte bzw. Zustandsform des anstehenden Baugrundes wurden am 22.01.2024 auf dem Grundstück insgesamt fünf Rammsondierungen niedergebracht.

Die Sondierungen wurden mit der schweren Rammsonde (DPH) nach DIN EN ISO 22476-2 durchgeführt.

Die Lage der Sondieransatzpunkte ist im Lageplan in Anlage 1 dargestellt.

Das Niveau der Sondieransatzpunkte (SAP) entsprach der Geländeoberkante.

Die Versuchsergebnisse in Form von Rammdiagrammen sind Anlage 3 zu entnehmen. Auf der Abszisse ist die Anzahl der Schläge angegeben, die erforderlich war, um die Sonde um jeweils 0,10 m in den Boden einzutreiben; auf der Ordinate kann die dazugehörige Eindringtiefe abgelesen werden.

Die Grunddaten der Rammsondierungen (**RS**) sind in Tabelle 2 zusammengefasst:

212698 . 1 . 2 . Seite 9 von 33

Tabelle 2: Grunddaten der Rammsondierungen

Rammsondierung	Ansatzhöhe [m ü. NHN]	Tiefe [m]	Sondierendteufe [m ü. NHN]
RS1	440,78	7,1	433,68
RS2	440,89	7,0	433,89
RS3	441,00	7,0	434,00
RS4	441,01	7,1	433,91
RS5	441,28	7,1	434,18

Die Ergebnisse der durchgeführten Rammsondierungen lassen auf eine überwiegend lockere Lagerung der Kiessande bzw. eine überwiegend weiche Zustandsform der anstehenden Aueböden schließen. Böden von mitteldichter Lagerung stehen lokal erst ab 4,4 m Tiefe an. Mitteldicht bis dicht gelagerte Böden folgen ab ca. 7 m unter Gelände.

3.3 Bodenmechanische Laborversuche

Zur Ermittlung der geotechnischen Bodenkennwerte wurden dem Bohrgut der Kleinbohrungen Bodenproben entnommen und unserem bodenmechanischen Labor überbracht. An ausgewählten Bodenproben erfolgte eine Bestimmung der Kornverteilung gemäß DIN 18123 mit Nasssiebung.

Die Ergebnisse der bodenmechanischen Laboruntersuchungen sind in Anlage 4 (Kornverteilungskurven) dokumentiert und in Tabelle 3 zusammengefasst.

212698 . 1 . 2 . Seite 10 von 33

Tabelle 3: Ergebnisse Bodenmechanik

Kleinbohrung Entnahmetiefe [m]	Bodenart DIN 4022	Bodengruppe DIN 18196	Wasserdurchlässigkeit $\mathbf{k}_{\mathbf{f}}[\text{m/s}]$
KB1 2,0 m – 3,0 m	G, u, s'	GŪ	Ca. 4 * 10 ⁻⁶ (Verfahren nach KAUBISCH)
KB2 0,8 m - 2,2 m	U, s', g'	U	Ca. 4 * 10 ⁻⁷ (Verfahren nach BEYER)
KB2 2,9 m - 6,4 m	G, s'	GI	Ca. 7 * 10 ⁻³ (Verfahren nach BEYER)
KB3 2,6 m - 5,0 m	G, u', s'	GU	Ca. 2 * 10 ⁻⁴ (Verfahren nach USBR)
KB3 5,0 m - 7,0 m	G, s, u'	GU	Ca. 1 * 10 ⁻² (Verfahren nach SEILER)
KB4 1,6 m – 2,8 m	G, s, u'	GU	Ca. 2 * 10 ⁻⁴ (Verfahren nach USBR)
KB4 2,8 m - 7,0 m	G, s, u'	GU	Ca. 1 * 10 ⁻² (Verfahren nach SEILER)
KB5 2,6 m – 5,0 m	G, s, u'	GU	

4. Grundwassersituation

4.1 Grundwasserstände

Bei den am 22.01.2024 durchgeführten Geländearbeiten wurde das Grundwasser lokal bereits in 0,65 m Tiefe unter Ansatzpunkt angetroffen. Es muss in den Kiesen mit gespannten Grundwasserverhältnissen gerechnet werden.

Auf dem Grundstück wurden im Jahr 1996 zwei Grundwassermessstellen errichtet. Die Lage der Messstellen ist dem Lageplan in Anlage 1 zu entnehmen. Die Schichtenverzeichnisse sind Anlage 6 beigefügt. Die Grundwasserstände

212698 . 1 . 2 . Seite 11 von 33

zur Stichtagsmessung am 07.03.2024 sind der nachfolgenden Tabelle zu entnehmen.

Tabelle 4: Grundwasserstände GWM vom 07.03.2024

Grundwasser- messstelle Pegeloberkant (POK) [m ü. NHN]		Tiefe GW [m u. POK]	Kote GW [m ü. NHN]
GWM1	441,80	1,90	439,90
GWM2	442,52	2,08	440,44

Die Grundwasserstände zur Stichtagsmessung am 07.03.2024 lagen etwa 0,15 m unter dem langjährigen mittleren Grundwasserstand. Der langjährige mittlere Grundwasserstand ist demnach etwa auf Kote 440,6 m ü. NHN im westlichen Teil des Grundstücks und etwa auf Kote 440,1 m ü. NHN im östlichen Teil des Grundstücks zu erwarten. Zwischenbereiche dürfen geradlinig interpoliert werden.

Gemäß dem Informationsdienst überschwemmungsgefährdeter Gebiete in Bayern des Bay. Landesamtes für Umwelt ist davon auszugehen, dass bei Hochwasserereignissen mit einem Anstieg des Grundwassers bis an Geländeoberfläche zu rechnen ist.

Nach den Angaben des WWA München vom 20.11.2001 stand das Grundwasser beim Pfingsthochwasser 1999 (HW₉₉-Kote) im westlichen Teil des Baufeldes auf Kote 441,5 m ü. NHN und im östlichen Teil des Baufeldes auf Kote 440,8 m ü. NHN und damit zum Teil über Geländeniveau.

Beim Augusthochwasser 2013 wurden in Freising lokal sogar noch höhere Grundwasserstände als im Jahr 1999 gemessen.

212698 . 1 . 2 . Seite 12 von 33

Zur Festlegung des Bemessungsgrundwasserstandes im Bauendzustand (HHW-Kote) ist daher auf die HW₉₉-Kote ein Sicherheitszuschlag von 0,5 m zu erheben, so dass sich für das Grundstück der höchste zu erwartende Grundwasserstand auf Kote 442,0 m ü. NHN für den westlichen Teil des Baufeldes und Kote 441,3 m ü. NHN im östlichen Teil des Baufeldes ergibt.

Die Grundwasserfließrichtung ist subparallel auf die Isar zu gerichtet; das Grundwassergefälle beträgt bei Mittelwasser ca. 0,2 %. Der Grundwasserstand korrespondiert mit dem Pegel der westlich vorbeifließenden Isar. Durch Isar-Infiltration bei Hochwasser ändert sich die Fließrichtung des Grundwassers von Süd/Nord nach West/Ost.

4.2 Betonaggressivität des Grundwassers

Aufgrund der vorhandenen Torfhorizonte muss nach DIN 4030 mit betonangreifendem Grundwasser gerechnet werden ("schwach angreifend", XA1).

5. Stellungnahme

5.1 Zum Baugrund

5.1.1 Erdbebenklassifizierung

Das Bauvorhaben liegt gemäß DIN EN 1998-1 (EC8) in keiner Erdbebenzone.

212698 . 1 . 2 . Seite 13 von 33

5.1.2 Bodenklassifizierung

Nach DIN 18300 und DIN 18196 werden die Bodenschichten wie folgt klassifiziert:

Tabelle 5: Bautechnische Bodenklassifizierung

Bodenschicht	Bodenart DIN 4022	Bodenklasse DIN 18300*	Bodengruppe DIN 18196	Homogenbereich DIN 18300** DIN 18301** DIN 18303**
Oberboden		1	Mu	O ¹
Auffüllungen		3 bis 5	Α	E1 / B1 / V1
Torf	H, (u)	2	HZ	E2 / B2 / V2
Aueböden	U, s, S, u*	2 bis 4	U, S SŪ	E3 / B3 / V3
Quartäre Kiese/Sande	G, s, u' (x') G, s	3 bis 4	GU, GW, GŪ	E4 / B4 / V4

^{*}VOB/C 2012 (nur informativ)

Nach ZTVE-StB 17 sind die quartären Kiese als "nicht frostempfindlich" (F1-Material) wegen dem z. T. sehr hohen Feinkornanteils aber auch als "frostempfindlich" (F3-Material) einzustufen. Die Aueböden und Torfböden sind "frostempfindlich" (F3-Material).

Eine detaillierte Beschreibung der Homogenbereiche nach VOB/C (2019) kann in der Hauptuntersuchung erfolgen, wenn alle zur Ausführung kommenden Gewerke festgelegt sind.

212698 . 1 . 2 . Seite 14 von 33

^{**}VOB/C 2019

¹ DIN 18320 (Landschaftsbauarbeiten)

5.1.3 Bodenkennwerte zur erdstatischen Berechnung

Erdstatischen Berechnungen sind folgende charakteristische Bodenkennwerte zugrunde zu legen:

Tabelle 6: Charakteristische Bodenkennwerte

	φ′ _k [°]	c' _k [kN/m ²]	γ [kN/m³]	γ' [kN/m ³]	$\frac{\mathbf{E}_{\mathbf{S},\mathbf{k}}}{[MN/m^2]}$
Auffüllungen locker gelagert	30	0	19	9	5 - 15
Torf trocken - nass	15	2	11	1	3 - 5
Aueböden weich bis steif	17,5	1 - 5	18	9	5 - 10
Quartäre Kiese locker gelagert	32,5	0	19	9	10 - 20
Quartäre Kiese mitteldicht gelagert	35	0	21	11	30 - 40
Quartäre Kiese dicht gelagert	37,5	0	22	13	60 - 80

5.2 Zur Gründung

Im Baufeld stehen lokal bis in eine Tiefe von ca. 4,4 m unter Ansatzpunkt locker gelagerte Kiesböden, bzw. Böden weicher Zustandsform an. Diese Böden sind nicht zur Gründung geeignet und müssen mit der Gründung vollständig durchfahren werden. Je nach Gründungstiefe kommen unterschiedliche Gründungsvarianten in Frage. Die folgenden Gründungsempfehlungen basieren auf der Annahme, dass aus Gründen des Hochwasserschutzes das Gelände um mind. 1 m angehoben werden muss.

212698 . 1 . 2 . Seite 15 von 33

5.2.1 Unterkellerte Bauweise

Bei einer unterkellerten Bauweise bieten sich zur Gründung vor Allem folgende Möglichkeiten an:

Rüttelstopfverdichtung (RSV)

Es bietet sich eine Bodenverbesserung mittels Rütteldruckverdichtung (RDV) bzw. Rüttelstopfverdichtung (RSV) an, womit die Scherfestigkeit und das Steifemodul der bindigen und gemischtkörnigen Böden verbessert werden kann. Der Vorteil dieses Verfahrens besteht darin, dass die Säulenlänge je nach Tiefenlage der dicht gelagerten Böden individuell angepasst werden kann. Bei der Tiefenverdichtung ist der Rüttler mindestens 0,5 m in die tragfähigen Böden von mindestens dichter Lagerung bzw. halbfester Konsistenz einzufahren. Die aufnehmbaren Sohldrücke für Streifenfundamente können dann auf 250 kN/m² (charakteristisch) festgelegt werden. Flächenspannungen sind im Allgemeinen auf 120 kN/m² (charakteristisch) zu begrenzen. Das Gründungskonzept ist frühzeitig mit der ausführenden Firma bzgl. der statischen Nachweise abzustimmen. Voraussetzung für diese Gründungsvariante ist, dass die teils humosen Auelehme und Torfböden vollständig entnommen werden.

Nach Fertigstellung der Rüttelsäulen empfehlen wir zur Lastverteilung ein mind. 0.4 m mächtiges Kiessandpolster der Bodengruppe GW gemäß DIN 18196 über den Säulen aufzubauen. Die Lastverteilungsschicht ist auf 103 % der einfachen Proctordichte (E_{V2} größer 120 MN/m^2) zu verdichten. Der Verdichtungserfolg ist mit Lastplattendruckversuchen nach DIN 18134 nachzuweisen.

Vollverdrängungspfähle (Tiefgründung)

Es kommt eine Tiefgründung mit Vollverdrängungspfählen nach DIN EN 12699 z. B. als duktile, mantelverpresste Gusseisenrammpfähle oder Rüttelor-

212698 . 1 . 2 . Seite 16 von 33

tbetonpfähle (ROB-Pfähle) in Frage. Die Pfähle müssen bis zum Erreichen der zur Gründung geeigneten tragfähigen, dicht gelagerten Kiese geführt werden. Die Gebrauchslasten je Pfahl liegen im Bereich von 300 kN – 500 kN.

5.2.2 Nicht unterkellerte Bauweise

Bei einer nicht unterkellerten Bauweise bieten sich zur Gründung vor Allem folgende Möglichkeiten an:

Vermörtelte Rüttelstopfverdichtung (BSS/FMSS)

Es bietet sich eine Bodenverbesserung mittels vermörtelter Rüttelstopfsäulen an. Hierfür kommen z. B. Betonstopfsäulen (BSS) bzw. Fertigmörtelstopfsäulen (FMSS) in Frage. Bei beiden Verfahren wird die Scherfestigkeit und das Steifemodul der bindigen und gemischtkörnigen Böden verbessert und somit können verhältnismäßig hohe Lasten abgetragen werden. Der Vorteil dieses Verfahrens besteht darin, dass die Säulenlänge je nach Tiefenlage der dicht gelagerten Böden individuell angepasst werden kann. Bei der Tiefenverdichtung ist der Rüttler mindestens 0,5 m in die tragfähigen Böden von mindestens dichter Lagerung bzw. halbfester Konsistenz einzufahren. Die aufnehmbaren Sohldrücke für Streifenfundamente können bei Ausführung von vermörtelten Rüttelstopfsäulen auf maximal 350 kN/m² (charakteristisch) festgelegt werden. Flächenspannungen sind im Allgemeinen auf 150 kN/m² (charakteristisch) zu begrenzen.

Vollverdrängungspfähle (Tiefgründung)

Es kommt eine Tiefgründung mit Vollverdrängungspfählen nach DIN EN 12699 z. B. als duktile, mantelverpresste Gusseisenrammpfähle oder Rüttelortbetonpfähle (ROB-Pfähle) in Frage. Die Pfähle müssen bis zum Erreichen der

212698 . 1 . 2 . Seite 17 von 33

zur Gründung geeigneten tragfähigen, dicht gelagerten Kiese geführt werden. Die Gebrauchslasten je Pfahl liegen im Bereich von 300 kN – 600 kN.

Bohrpfähle

Zur Gewährleistung einer nahezu setzungsfreien Gründung können die weichen Aueböden und die locker gelagerten Kiessande auch vollständig mit einer Tiefgründung zu durchfahren werden. Für die Bemessung nach DIN EN 1997 in Verbindung mit DIN 1054 von Bohrpfählen nach DIN EN 15636 können angelehnt an EA-Pfähle folgende Werte für Mantelreibung und Spitzendruck zum Ansatz kommen:

Tabelle 7: Charakteristische Pfahlkennwerte

Bodenschicht	q s,k [kN/m²]	$\mathbf{q}_{\mathbf{b},\mathbf{k}}$ bei $\mathbf{s}/\mathbf{D}_{\mathbf{s}}$ $[\mathbf{k}N/m^2]$		
	[KIN/III-]	0,02	0,03	0,1
Aufüllungen/ Aueböden/Torf	П			
Quartäre Kiese/Sande locker bis mitteldicht	80			
Quartäre Kiese/Sande mitteldicht bis dicht	130	1.000	2.000	4.000

Die EA-Pfähle sind zu beachten.

Als vorbereitende Maßnahme zur Erstellung der Gründung (RSV oder Vollverdrängungspfähle bzw. Bohrpfähle) ist ein Arbeitsplanum in Form eines lagenweise zu erstellenden Kiespolsters der Bodengruppe GW gemäß DIN 18196 einzuplanen. Die Mächtigkeit des Kiespolsters ist auf mindestens

212698 . 1 . 2 . Seite 18 von 33

0,5 m zu bemessen. Das Kiespolster dient später als Gründungsunterlage. Das Merkblatt des Deutschen Bauindustrieverbandes zur Vermeidung von Maschinenumstürzen im Spezialtiefbau ist zu beachten.

Die Gründungssohle aller nicht unterkellerten Bauteile (z. B. Garagen, Carports, etc.), insbesondere der Tiefgaragenabfahrt sowie z. B. Treppenaufund Treppenabgänge sowie Gebäudezugänge und Rampen hat zur Vermeidung von Frostschäden mindestens 1,3 m unter späterem Geländeniveau zu liegen, wenn die anstehenden Böden nicht frostsicher sein sollten. Auch nicht unterkellerte Bereiche müssen mit einer Tiefgründung gegründet werden.

Aufgrund der auf dem Baufeld zu erwartenden bzw. im direkt unmittelbaren Nachbargrundstuck angetroffenen Torfhorizonte muss mit betonangreifendem Grundwasser gerechnet werden. Das jeweilige Gründungssystem muss darauf ausgelegt sein. Eine entsprechende Betongüte bzw. ausreichender Korrosionsschutz der Pfähle ist vorzusehen.

Sollten zur Auftriebssicherung des Bauwerks Zugpfähle erforderlich werden, so empfehlen wir hierzu nachverpresste Mikropfähle nach DIN EN 14199. Für die Bemessung darf eine charakteristische Mantelreibung von 150 kN/m² in den quartären (mind. mitteldicht gelagerten) Kiesböden angesetzt werden.

Die Sondergründungsmaßnahmen (RSV, Gusseisenrammpfahl, Zugpfähle, usw.) müssen vom Sachverständigen für Geotechnik überwacht und freigegeben werden. Bodenaustauschmaßnahmen müssen nach ordnungsgemäßer Verdichtung vom Sachverständigen für Geotechnik abgenommen werden.

212698 . 1 . 2 . Seite 19 von 33

5.3 Erschließungsmaßnahmen

5.3.1 Ver- und Entsorgungsleitungen

Im Baugebiet stehen oberflächennah Böden sehr geringer Tragfähigkeit an. Die Gründung der Ver- und Entsorgungsleitungen muss deshalb auf einem Teilbodenaustausch erfolgen. Als Austauschmaterial empfehlen wir Kiessand der Bodengruppe GW nach DIN 18196. Die Mächtigkeit muss mind. 0,4 m betragen. Sollte der Entwässerungskanal nicht in den anstehenden Kiessanden gründen, ist die Mächtigkeit des Kiespolsters auf mind. 0,5 m zu bemessen. Das Gründungspolster ist unter 45° zu verbreitern. Vor dem Einbau der Kiessande sind in die Aushubsohle Schroppen oder gut abgestuftes, altlastentechnisch untersuchtes Betonbrechgut mit Baggerschaufel so lange in die Aushubsohle einzuarbeiten, bis kein weiterer mechanischer Fortschritt mehr zu erzielen ist. Die Vorgaben der DIN EN 1610 sind zu beachten.

5.3.2 Verkehrsflächen

Wir empfehlen bei der Planung der Verkehrs- und Parkflächen RSTO 12 zu beachten. Aufgrund der Plastizität und Frostempfindlichkeit der oberflächlich anstehenden Böden ist ein Bodenaustausch (Unterbau) vorzusehen. Im Straßenbereich mit Schwerlastverkehr empfehlen wir einen Bodenaustausch von mindestens 1,0 m und im PKW-Parkplatzbereich von mindestens 0,8 m mit Kiessand der Bodengruppe GW nach DIN 18196 oder frostsicherem und güteüberwachtem (schadstofffreiem) Betonrecyclingmaterial (RC1 nach Ersatzbaustoffverordnung). Oberboden- und Rotlagehorizont sind vollständig zu entnehmen.

Vor dem Einbau der Kiessande sind in die Aushubsohle Schroppen oder gut abgestuftes, altlastentechnisch untersuchtes Betonbrechgut mit Baggerschau-

212698 . 1 . 2 . Seite 20 von 33

fel so lange in die Aushubsohle einzuarbeiten, bis kein weiterer mechanischer Fortschritt mehr zu erzielen ist. Darauf muss ein biaxial zugfestes Geogitter mit mindestens 45 kN/m Zugkraft und Maschenweite von 20 mm eingebaut werden.

5.4 Zur Bauausführung

Bei Planung und Erstellung von Gruben und Gräben sind DIN 4123 und DIN 4124 zu beachten.

Bei Anlage einer frei geböschten Baugrube darf aufgrund eventuell auftretender Rollkieslagen bzw. der anstehenden Aueböden der Winkel der Böschungsneigung nicht steiler als 40° ausgeführt werden. Stehen in der Böschung Auffüllböden oder (aufgeweichte) Aueböden an, so ist der Böschungswinkel entsprechend abzuflachen. Zur Vermeidung von Erosion, Austrocknung und Durchströmung sind die Böschungen während der gesamten Bauzeit bis 2 m über die Böschungskrone hinaus mit Folien abzudecken. Die Fläche auf der Böschungskrone ist in einem Abstand von 2 m zur Böschungskrone für den Zeitraum der Bauausführung absolut lastfrei zu halten. Das Gelände oberhalb der Böschung sowie die Böschung selbst sind täglich auf Rissbildung zu kontrollieren.

Wird die Baugrube im frei geböschten Zustand steiler als 40° oder tiefer als 5,0 m erstellt, ist der rechnerische Nachweis der Standsicherheit nach DIN 4084 zu erbringen.

Sollten aus Platzgründen oder zur Sicherung von Leitungen Bereiche der Baugrube im Grundwasser verbaut werden müssen, sind hierfür schlossgedichtete Spundwände in Betracht zu ziehen. Für das Abteufen der Spund-

212698 . 1 . 2 . Seite 21 von 33

wände werden Vor- bzw. Auflockerungsbohrungen erforderlich. Auch durch Lockerungsbohrungen können Erschütterungen entstehen, die ggf. bei Nachbargebäuden zu Schäden oder Beeinträchtigungen der Gebäudenutzung führen. Wir empfehlen eine Überwachung der Rammarbeiten mit Hilfe von Erschütterungsmessungen nach DIN 4150, Teil 3 vorzusehen sowie ein bauseitiges Beweissicherungsverfahren. Wird zur Sicherung von Nachbargebäuden ein Baugrubenverbau notwendig, ist die Verbauart primär nach den statischen Erfordernissen zu planen, z. B. eine erschütterungsarm herzustellende und verformungsarme Bohrpfahlwand. Wird der Baugrubenverbau mit elastischer Bettung gerechnet, kann die charakteristische Bettungsziffer k_{s,k} von 0 MN/m³ in der Baugrubensohle bis in 5 m Tiefe auf 50 MN/m³ linear ansteigend und dann konstant angesetzt werden.

Je nach einzuhaltender Verformung muss die Baugrubensicherung ggf. abgesteift oder rückverankert werden. Bauteile, z. B. Verpressanker die auf Nachbargrundstücke reichen sind genehmigungspflichtig. Die Nachweise sind vom Fachplaner zu führen. Die Planung der Baugrubensicherung muss zwingend mit dem Sachverständigen für Geotechnik abgestimmt werden.

Der ggf. erforderliche Baugrubenverbau bzw. die Gründung des Neubaus reicht in das Grundwasser bzw. den Grundwasserschwankungsbereich. Somit wird eine wasserrechtliche Genehmigung erforderlich. Diese ist rechtzeitig beim LRA Freising einzuholen. Hierzu stehen wir Ihnen gerne zur Verfügung.

Ausgehend einem mittleren Grundwasserstand auf Kote 440,6 m ü. NHN im westlichen Teil des Grundstücks und etwa auf Kote 440,1 m ü. NHN im östlichen Teil des Grundstücks, liegt die Gründungssohle bei einer unterkellerten Bauweise unterhalb des mittleren Grundwasserstandes. Die Ausführung der Baugrube muss deshalb unbedingt im Zusammenhang mit der Grundwasser-

212698 . 1 . 2 . Seite 22 von 33

haltung gesehen werden. Kann die Gründungssohle nicht angehoben werden, so empfiehlt es sich, die Baugrube wasserdicht zu umschließen, wobei die Verbauwände mindestens 2 m in die weitgehend undurchlässigen bindigen tertiären Schichten einbinden müssen. Die Tiefenlage muss noch zwingend erkundet werden. Ausführungstechnisch bieten sich dazu Spundwände, überschnittene Bohrpfahlwände oder Deep-Soil-Mixing-Wände an. Die Wahl der Verbauart der dichten Umschließung muss sich nach den statischen Erfordernissen richten.

Im Hinblick auf die Sicherung der Baumaßnahme gegen Grundwasser muss von dem höchstmöglichen Grundwasserstand (HHW/HGW-Kote) auf Kote 442,0 m ü. NHN im Westen bzw. Kote 441,3 m ü. NHN im Osten ausgegangen werden. Dies erfordert für alle unter der resultierenden Abdichtungskote liegenden Bauteile die Ausbildung einer auftriebssicheren und druckwasserdichten Wanne, bevorzugt betontechnologisch im System "Weiße Wanne" gemäß WU-Richtlinie des DAfStb. Abdichtungen sind aufgrund von kapillar aufsteigendem Grundwasser mindestens 0,3 m über HHW/HGW-Kote zu führen.

Auch für alle erdberührten Bauteile, die nicht in das Grundwasser eintauchen, sind Abdichtungsarbeiten gegen von außen drückendes Wasser (Stauwasser) für Wassereinwirkungsklasse W2.1-E / W2.2-E nach DIN 18533-1, zu beachten, da die Wasserdurchlässigkeit (krWert) des Baugrunds kleiner als 1*10⁻⁴ m/s ist. Das gesamte Untergeschoss des geplanten Gebäudes ist daher druckwasserdicht gemäß WU-Richtlinie des DAfStb zu erstellen (auch alle Gebäudedurchdringungen). Bei einer hochwertigen Nutzung der Flächen im Kellergeschoss müssen ggf. zusätzliche diffusionsdichte Abdichtungen, wie z. B. eine Schwarzabdichtung oder Frischbetonverbundfolie vorgesehen werden.

212698 . 1 . 2 . Seite 23 von 33

Für die Abdichtung auf erdberührten Deckenflächen gegen nichtdrückendes Wasser ist DIN 18533-1 für Wassereinwirkungsklasse W3-E zu beachten.

Das Abdichtungskonzept ist vom Fachplaner unter Beachtung der Nutzungsklasse zu erstellen und mit allen Baubeteiligten (v. a. dem Gebäudenutzer) abzustimmen.

Die Auftriebssicherheit der Bauteile muss vom Tragwerksplaner für Bauzwischen- und Bauendzustände nachgewiesen werden.

Die Geländeprofilierung im Bauendzustand ist so zu gestalten, dass bei Starkregenereignissen kein oberirdischer Zufluss an bzw. in die Gebäude stattfinden kann (Schwellen, Rinnen, Mulden, ausreichendes Freiflächengefälle).

Wir empfehlen das Merkblatt DWA-M 553 Hochwasserangepasstes Planen und Bauen zu beachten.

Grundleitungen sind wegen der Grundwassersituation nicht in einem Sandbett zu verlegen, sondern müssen, um eine Unterspülung zu vermeiden, in Magerbeton verlegt bzw. in die Bodenplatte integriert werden.

Die anstehenden Aueböden, Torfböden und künstlich aufgefüllte Böden sind nicht zur Hinterfüllung der Arbeitsräume des Gebäudes, die Kiessande sind nur bei einer nachgewiesenen Wasserdurchlässigkeit mit k_f -Wert größer $1*10^4$ m/s zur Hinterfüllung der Arbeitsräume des Gebäudes geeignet. Die Hinterfüllung ist lagenweise einzubauen und mit geeignetem Gerät auf mindestens 103 % der einfachen Proctordichte (E_{V2} größer 120 MN/m²) zu verdichten.

212698 . 1 . 2 . Seite 24 von 33

Vor dem Hinterfüllen des Erdaushubkeiles ist unbedingt auf "Sauberkeit", d. h. Versickerungsfähigkeit der Sohle zu achten (keine Mörtel-, Putz- oder Betonreste im Arbeitsraumbereich). Anderenfalls kann sich versickerndes Oberflächenwasser hinter den Außenwänden aufstauen und zu Vernässungen führen.

Für die Beseitigung nicht auszuschließender alter Bebauungsreste wie Schächte, Mauerwerke oder Fundamente sowie für die erdbautechnisch ungeeigneten Böden (Aue- und Torfböden) und der lokal auftretenden künstlichen Bodenauffüllungen sind unbedingt gesonderte Positionen im Leistungsverzeichnis Erdbau vorzusehen

Die oberflächennahen Aueböden sind sehr empfindlich bei Wasserzutritt. Erdbaumaßnahmen sollten daher bevorzugt nur bei trockener Witterung erfolgen.

Bei Winterbau ist darauf zu achten, dass der frostempfindliche Baugrund nicht auffriert bzw. bereits fertig gestellte Bauteile nicht unterfrieren. Frostschutzmaßnahmen sind vorzusehen.

Leitungen im Bereich der Baugrube und des umliegenden Geländes sind festzustellen, zu sichern oder gegebenenfalls zu verlegen.

Der bauliche Zustand der angrenzenden Wege und Straßen sowie Nachbargebäude ist unbedingt zu prüfen und bauseits ein Beweissicherungsverfahren durchführen zu lassen.

212698 . 1 . 2 . Seite 25 von 33

5.5 Bauzeitliche Wasserhaltung

Für die Aushub- und Gründungsarbeiten wird bei einer unterkellerten Bauweise eine sehr aufwändige Bauwasserhaltung erforderlich. Wir empfehlen daher bei der Bauwerksplanung die Gründungsebene bzw. die Bauwerkstiefteile auf ein möglichst hohes Niveau anzuheben bzw. auf Untergeschosse zu verzichten.

Kann auf Untergeschosse nicht verzichtet werden, kommt nur eine dichte vertikale Umschließung der Baugrube in Frage. Bei Ausführung einer dichten Baugrubenumschließung, z. B. mit einer Spundwand mit Einbindung der Dichtwände in die tertiären Böden, ist zu beachten, dass Spundwände in der Regel nur mit Vorbohrungen einzubringen sind. Im Bereich der Einbindung in die tertiären Schichten empfehlen wir die Spundwände im Hochfrequenzrüttelverfahren einzubringen. Zur Gewährleistung einer dichten Umschließung muss eine Einbindung in die tertiären Schluffe von mindestens 2 m bzw. entsprechend der statischen Erfordernisse erfolgen.

Der tertiäre Grundwasserstauer wurde gemäß den Schichtenverzeichnissen für die 1996 errichteten Grundwassermessstellen in ca. 10,9 m Tiefe unter Geländeoberkante angetroffen, entsprechend Kote 430,4 m ü. NHN bzw. Kote 430,9 m ü. NHN. Zur Abschätzung der benötigten Länge der Spundwanddielen und Dimensionierung der Wasserhaltung werden im Bereich der Baugruben zwingend tiefe Aufschlussbohrungen und bodenmechanische Laboruntersuchungen erforderlich (Bohrtiefe mind. 15 m).

Das Grundwasser wird innerhalb der Umschließung einmal abgepumpt (Lenzen der Baugrube). In der Folge sind bei ordnungsgemäßer Fußeinbindung in den Grundwasserstauer nur noch geringe Mengen an Schloss-, Sohl- und

212698 . 1 . 2 . Seite 26 von 33

Tagwasser zu fördern. Die Versickerung des geförderten Wassers kann in diesem Fall auf dem eigenen Grundstück erfolgen.

Der bauzeitliche Bemessungsgrundwasserstand ist von uns festzulegen, sobald Baubeginn und Bauzeit bis zum Erreichen der Auftriebssicherheit bekannt sind.

Es müssen zwingend bauzeitlich Flutungsöffnungen am UG/TG vorgesehen werden, um im Havariefall das nicht auftriebssichere Untergeschoss gegen Aufschwimmen zu sichern.

Für Eingriffe in das Grundwasser ist eine wasserrechtliche Erlaubnis beim LRA Freising einzuholen. Für die Konzeptionierung und Beantragung der Bauwasserhaltung stehen wir zur Verfügung. Bitte kommen Sie nach Vorlage der Entwurfsplanung zeitnah auf uns zu.

5.6 Niederschlagswasserversickerung

In den künstlich aufgefüllten Böden und den oberflächennahen bindigen Schluffböden darf bzw. kann das gesammelte Regenwasser nicht versickert werden. Die Böden sind daher im Bereich der geplanten Sickeranlagen vollständig gegen nachweislich nicht verunreinigten und gut wasserdurchlässigen Kiessand auszutauschen. Die Kiessande der Münchener Schotterebene sind dagegen zur Versickerung von Niederschlagswasser nach DWA-A 138 geeignet.

Die Bemessung der Versickerungsanlagen hat nach bau- und planungstechnischen Gesichtspunkten gemäß DWA-A 138 und DWA-M 153 zu erfolgen.

212698 . 1 . 2 . Seite 27 von 33

Nach den Ergebnissen der bodenmechanischen Untersuchungen kann für die hydraulische Bemessung der Versickerungsanlagen in den Kiesböden ein Wasserdurchlässigkeitsbeiwert von $k_f = 1 * 10^{-4}$ m/s angesetzt werden.

Der Mittlere Höchste Grundwasserstand (MHGW) zur Bemessung der Regenwasserversickerungsanlagen ist etwa auf Kote 440,9 m ü. NHN im westlichen Teil des Grundstücks und etwa auf Kote 440,4 m ü. NHN im östlichen Teil des Grundstücks anzunehmen.

Aufgrund des geringen Grundwasserflurabstandes kommen voraussichtlich nur flächige oder linienhafte Versickerungsanlagen (Mulden oder ggf. auch Rigolen) in Frage.

Die Freiflächenbereiche sollten über eine flächenhafte Versickerung (sickerfähige Pflaster) in Verbindung mit Sickermulden entwässert werden.

Zum Schutz vor Vernässungen ist auf einen ausreichenden Abstand der Versickerungsanlagen zu allen unterirdischen Bauteilen (auch Nachbarn) zu achten.

Sollten die Anforderungen der Niederschlagswasserfreistellungsverordnung nicht eingehalten werden können, so ist eine wasserrechtliche Erlaubnis einzuholen.

Sollte in ein Oberflächengewässer eingeleitet werden können, so sind die technischen Regeln zum schadlosen Einleiten des Niederschlagswassers in ein Oberflächengewässer (TRENOG sowie DWA-A 102) zu beachten. Alternativ kommt eine Einleitung in die Kanalisation in Frage. Hierfür ist eine Erlaubnis

212698 . 1 . 2 . Seite 28 von 33

beim Kanalbetreiber zu beantragen. Voraussichtlich muss dann eine Regenrückhaltung nach DWA-A 117 mit Drosselabfluss vorgesehen werden.

Vom Fachplaner sind in der Planung bzw. Dimensionierung der Regenwasserversickerungsanlagen Starkregenereignisse mit entsprechenden Sicherheiten zu berücksichtigen.

Es ist zu prüfen, ob ein Überflutungsnachweis durch Regenwasser gemäß DIN 1986-100 von Fachplaner geführt werden muss.

5.7 Hydrothermische Nutzung

Eine thermische Nutzung des quartären Grundwassers (1. Grundwasserstockwerk) zum Heizen und/oder Kühlen ist aus hydrogeologischer Sicht voraussichtlich möglich. Bestehende Nachbarnutzungen sind zu berücksichtigen. Wegen der im Umfeld anstehenden Torfhorizonte sind Zusatzmaßnahmen wegen Korrosionsschutz oder Verockerungen der Anlage vorzusehen. Für eine fachgutachterliche Beratung oder Planung stehen wir Ihnen zur Verfügung. Bitte kommen Sie bei Bedarf auf uns zu.

6. Altlastensituation

6.1 Boden

Im Zuge der Geländearbeiten wurden lokal künstlich aufgefüllte Böden bis in Tiefen von 1,7 m festgestellt.

212698 . 1 . 2 . Seite 29 von 33

Ausgewählte Proben haben wir zur orientierenden Beurteilung der Schadstoffsituation im Boden von der nach DIN EN ISO/IEC 17025 akkreditierten AGROLAB Labor GmbH in Bruckberg auf die Parameter nach LVGBT (Leitfaden zur Verfüllung von Gruben, Brüchen und Tagebauen) untersuchen lassen.

Die Analysenergebnisse der entnommenen Bodenproben sind in Tabelle 7 zusammengefasst und die Prüfberichte als Anlage 5 beigelegt. Die Proben wurden für eine orientierende Untersuchung im Feststoff untersucht und sind altlastentechnisch nach LVGBT wie folgt einzustufen:

Tabelle 8: Einstufung der Feststoffproben

Bodenprobe	Belastung [mg/kg]	Kategorie nach LVGBT
KB4 0-0,8 m	Cyanide: 1,2	Z 1.1
KB5 1,0-1,7 m		Z 0

Die künstlich aufgefüllten Böden sind im Zuge des Aushubs vollständig zu entnehmen, zu separieren und zur Beprobung gemäß LAGA PN98 zu Haufwerken mit maximal 300 m³ aufzuhalden. Zur Klärung der Entsorgungswege ist das Material gemäß Ersatzbaustoffverordnung (EBV), Leitfaden zur Verfüllung von Gruben, Brüchen und Tagebauen (LVGBT) bzw. der Deponieverordnung (DepV) zu deklarieren. Die hierbei erforderliche fachtechnische Aushubüberwachung kann von uns übernommen werden. Verunreinigtes Bodenmaterial ist ordnungsgemäß zu entsorgen Der Platzbedarf für die Haufwerksbildung sowie die Zeit bis zu einer Abfuhr des Materials (mind. etwa fünf Arbeitstage ab Beprobung) sind unbedingt in den Bauablauf einzuplanen.

212698 . 1 . 2 . Seite 30 von 33

In der Ausschreibung der Erdarbeiten sind Positionen für die Entsorgung der künstlich aufgefüllten Böden (BM0, BM-0*, BM-F0*, BM-F1, BM-F2 und BM-F3 nach EBV, Z 0, Z 1.1, Z 1.2 und Z 2 nach LVGBT sowie DK0, DK1 und DK2 nach DepV) zu berücksichtigen. Der Organikgehalt der zu entsorgenden Böden ist in der Ausschreibung der Erdarbeiten / Entsorgungsarbeiten zwingend zu berücksichtigen (TOC bis zu 6 M.-%). Massenabschätzungen und Quotelungen der Zuordnungsklassen sind vom Aufsteller der Ausschreibung vorzunehmen. Gerne stehen wir beratend für die Erstellung der Ausschreibungsunterlagen Titel Erdbau und Entsorgung zur Verfügung.

Es empfiehlt sich wegen der auftretenden Torfböden auch Positionen mit TOC größer 6 M.-% zu berücksichtigen, sowie eine geogene Arsenbelastung und erhöhte Cyanidgehalte im Oberboden.

6.2 Kampfmittel

Vor Ausführung der Erdarbeiten und der Spezialtiefbauarbeiten muss eine technische Kampfmittelsondierung des Grundstücks durch einen vom bayerischen Staatsministerium zertifizierten Kampfmittelsuchdienst erfolgen.

6.3 Bau- und Bodendenkmäler

Nach Kartenwerken des bay. Landesamts für Denkmalpflege gibt es keine Hinweise auf Bau- oder Bodendenkmäler im Bereich des Grundstücks.

212698 . 1 . 2 . Seite 31 von 33

6.4 Radon

Nach Angabe des Bundesamts für Strahlenschutz liegt der berechnete Wert an Radon-222 in der Bodenluft bei 108 kBq/m³.

Das Merkblatt "Radonschutz in Gebäuden" des Bayrischen Landesamts für Umwelt (Stand Mai 2020) ist zu beachten.

7. Schlussbemerkung

Auf Grundlage der uns vorliegenden Planungsunterlagen mit Stand vom 24.10.2023 wurden zur Erstellung eines geotechnischen Gutachtens Geländeund Laboruntersuchungen sowie weiterführende Recherchen in Hinblick auf die Grundwasserstände im Untergrund durchgeführt.

Die ausgeführten Geländearbeiten geben nur einen punktuellen Aufschluss der anstehenden Baugrundverhältnisse wieder. Im Zuge der Erd- und Gründungsarbeiten ist aufgrund dessen fortlaufend zu prüfen, ob die angetroffenen Untergrundverhältnisse mit den im Gutachten beschriebenen übereinstimmen. Sollten andere als die hier beschriebenen Baugrund- und Grundwasserverhältnisse angetroffen werden oder sich die Planung ändern, so ist unser Büro zur Abstimmung der weiteren Vorgehensweise unverzüglich in Kenntnis zu setzen.

Nach Vorlage der Entwurfsplanung mit definierten Gründungs- und Geländekoten muss diese Voruntersuchung zwingend zu einer Hauptuntersuchung nach DIN 4020 ergänzt werden.

212698 . 1 . 2 . Seite 32 von 33

Bei unterkellerter Bauweise müssen zur Planung der Bauwasserhaltung Aufschlussbohrungen zur Erkundung des Grundwasserstauers (Tiefenlage, Zusammensetzung) abgeteuft werden.

Aufgrund der Geotechnischen Kategorie 3 muss der Sachverständige für Geotechnik beratend bei der Planung der Baugrubensicherung, der Grundwasserhaltung, der Gründung und der Abdichtung erdberührter Bauteile eingebunden sowie zur baubegleitenden geotechnischen und umwelttechnischen Überwachung herangezogen werden.

Dr.rer.nat. Idrian Huber

München, den 04.09.2025

GRUNDBAULABOR MÜNCHEN GMBH

Anlagen

Verteiler:

 Stadt Freising, Amt 65 – Hochbau, Herrn Striegl, 1 Exemplar per Post und vorab per E-Mail an <u>rudolf.striegl@freising.de</u>

[Jegliche, auch auszugsweise Veröffentlichung dieses Berichtes, digital oder analog, bedarf unserer ausdrücklichen schriftlichen Genehmigung]

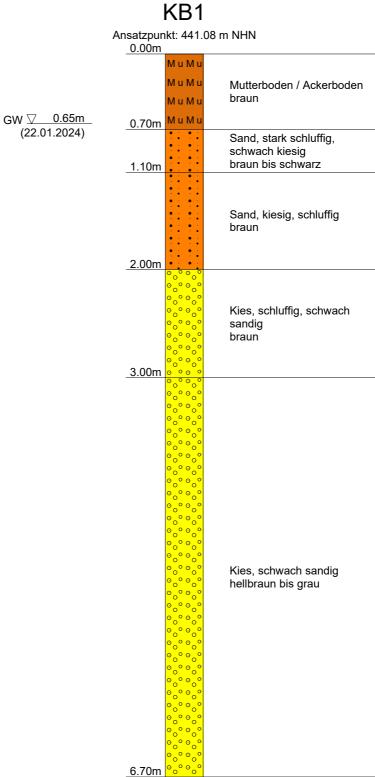
212698 . 1 . 2 . Seite 33 von 33

LAGEPLAN

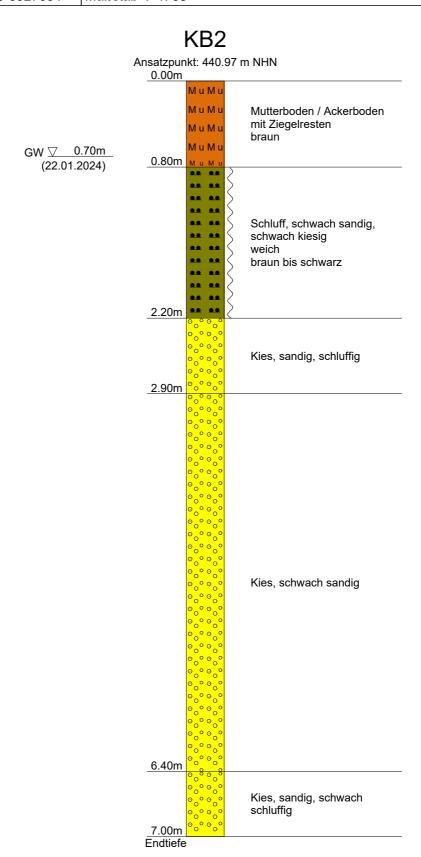
Anlage 1

Lageplan unmaßstäblich

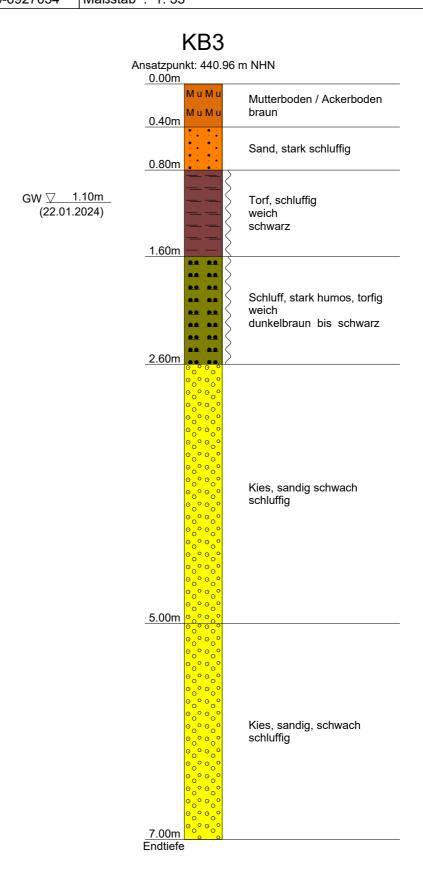
P23519, Freising, Grundschule Lerchenfeld


Anlage 1

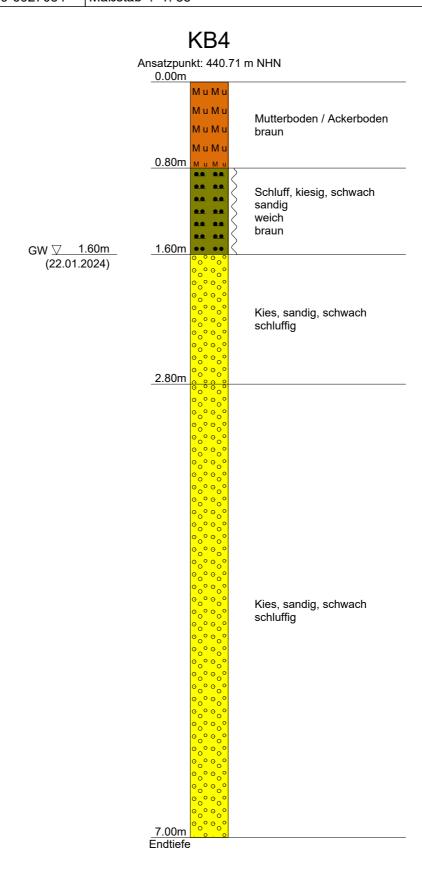
KLEINBOHRUNGEN


Anlage 2

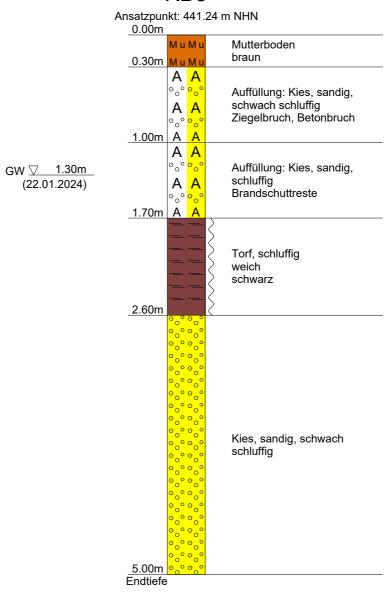
Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 2.1
Tel.: 089-699-378-0 Fax: 089-6927034	Maßstab : 1: 35



7.00m Endtiefe Kies, sandig hellbraun bis grau


Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 2.2
Tel.: 089-699-378-0 Fax: 089-6927034	Maßstab : 1: 35

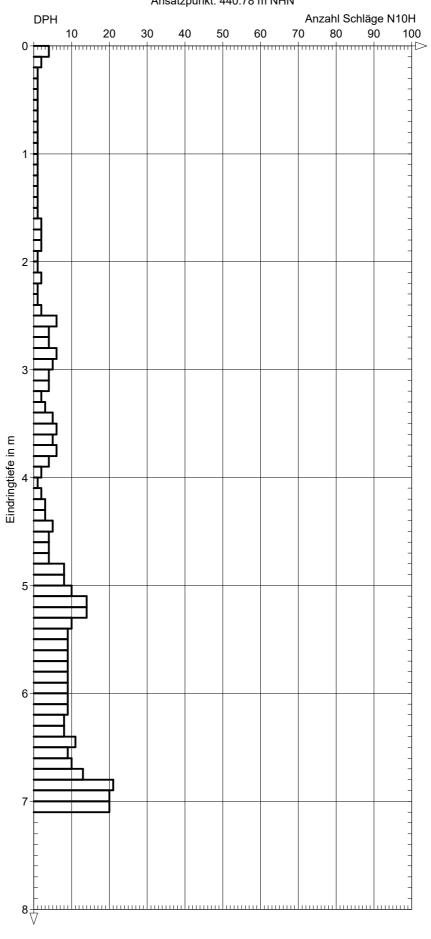
Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 2.3
Tel: 080-600-378-0 Fax: 080-6027034	Maßstah · 1·35



Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 2.4
Tel.: 089-699-378-0 Fax: 089-6927034	Maßstab : 1: 35

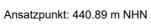
Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 2.5
Tel: 089-699-378-0 Fax: 089-6927034	Maßstab · 1· 35

KB5



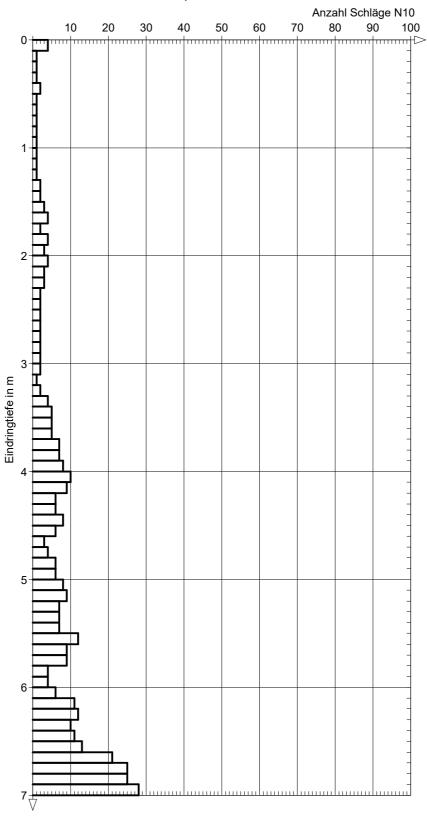
SONDIERPROFILE

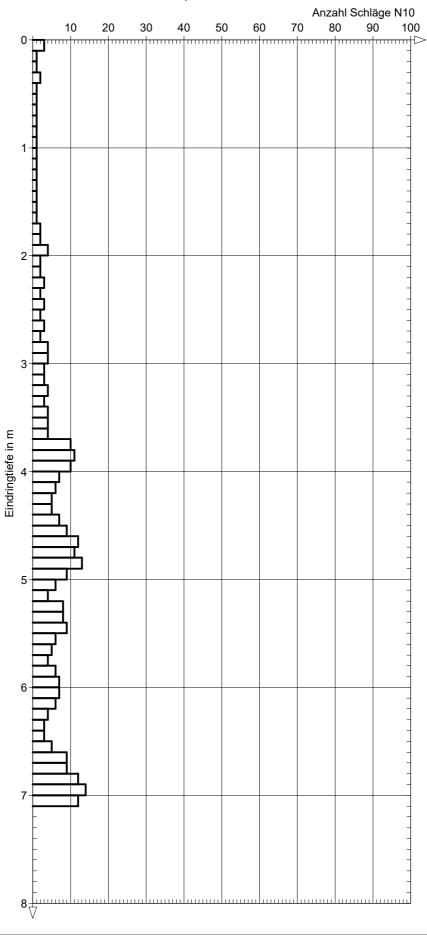
Anlage 3


Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 3.1
Tel: 089-699-378-0 Fax: 089-6927034	Maßstab : 1:35

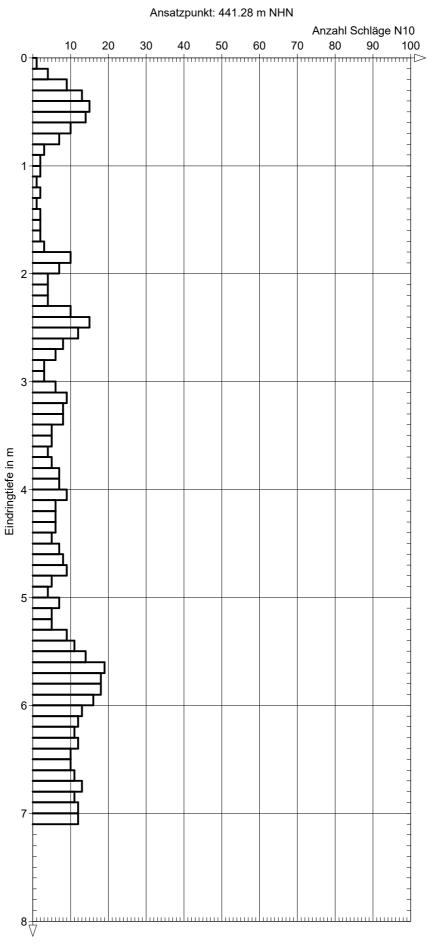

RS1
Ansatzpunkt: 440.78 m NHN

Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 3.2
Tel: 089-699-378-0 Fax: 089-6927034	Maßstab : 1: 35


RS2


Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 3.3
Tel: 089-699-378-0 Fax: 089-6927034	Maßstab : 1:35

RS3 Ansatzpunkt: 441.00 m NHN


Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 3.4
Tel: 089-699-378-0 Fax: 089-6927034	Maßstab : 1:35

RS4
Ansatzpunkt: 441.01 m NHN

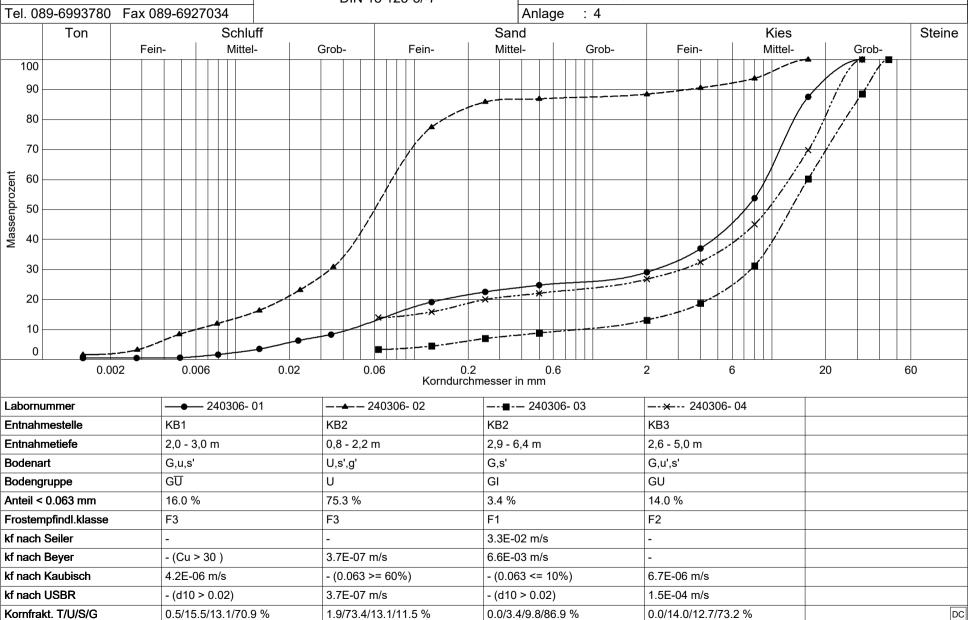
Grundbaulabor München GmbH	Projekt : Freising, Grundschule Lerchenfeld
Lilienthalallee 7	Projektnr.: P23519
80807 München	Anlage : 3.5
Tel: 089-699-378-0 Fax: 089-6927034	Maßstah · 1·35

RS5

KORNVERTEILUNGSKURVEN

Anlage 4

Grundbaulabor München GmbH
Lilienthalallee 7
80807 München


Kornverteilung

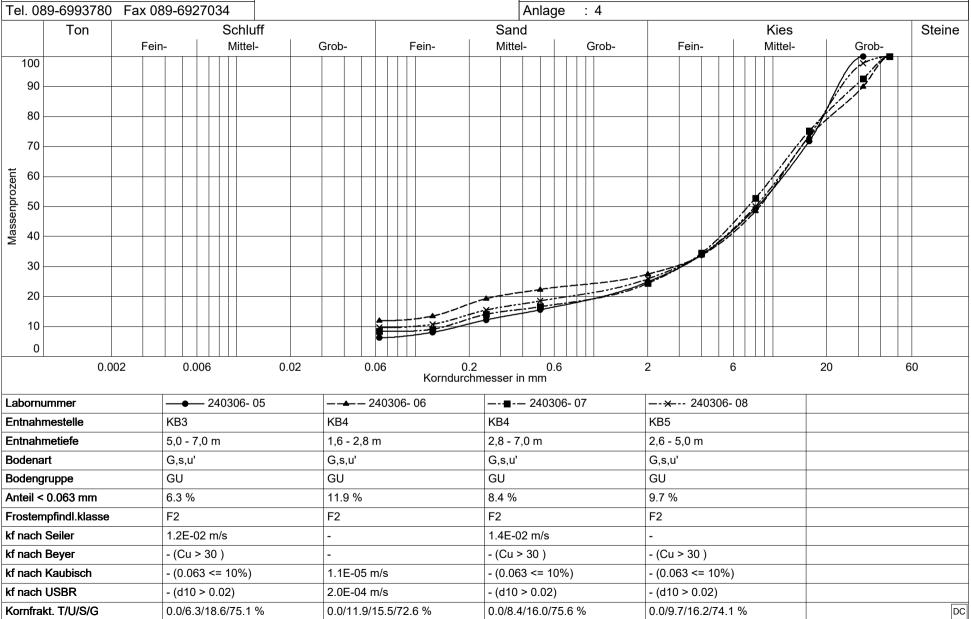
DIN 18 123-5/-7

Projekt : Freising, Grundschule Lerchenfeld

Projektnr.: P23519

Datum : 07.03.2024

Grundbaulabor München GmbH
Lilienthalallee 7
80807 München


Kornverteilung

DIN 18 123-5

Projekt : Freising, Grundschule Lerchenfeld

Projektnr.: P23519

Datum : 07.03.2024

UMWELTTECHNISCHE PRÜFBERICHTE

Anlage 5

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Grundbaulabor München Lilienthalallee 7 80807 München

> Datum 13.03.2024 Kundennr. 27056044

PRÜFBERICHT

Auftrag 3527624 P23519 Freising, Grundschule Lerchenfeld / EU

Analysennr. 386191 Probeneingang 07.03.2024 Probenahme **Keine Angabe** Probenehmer Auftraggeber Kunden-Probenbezeichnung KB4 0-0,8 m

Einheit Ergebnis Best.-Gr. Methode

Feststoff

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

- 1 00101011				
Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
Trockensubstanz	%	° 69,1	0,1	DIN EN 14346 : 2007-03, Verfahren A
Cyanide ges.	mg/kg	1,2	0,3	DIN EN ISO 17380 : 2013-10
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	17	4	DIN EN ISO 11885 : 2009-09
Blei (Pb)	mg/kg	39	4	DIN EN ISO 11885 : 2009-09
Cadmium (Cd)	mg/kg	0,3	0,2	DIN EN ISO 11885 : 2009-09
Chrom (Cr)	mg/kg	36	2	DIN EN ISO 11885 : 2009-09
Kupfer (Cu)	mg/kg	26	2	DIN EN ISO 11885 : 2009-09
Nickel (Ni)	mg/kg	26	3	DIN EN ISO 11885 : 2009-09
Quecksilber (Hg)	mg/kg	0,34	0,05	DIN EN ISO 12846 : 2012-08
Zink (Zn)	mg/kg	74,9	6	DIN EN ISO 11885 : 2009-09
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Acenaphthylen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Acenaphthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Fluoren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Phenanthren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Fluoranthen	mg/kg	0,09	0,05	DIN 38414-23 : 2002-02
Pyren	mg/kg	0,07	0,05	DIN 38414-23 : 2002-02
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Chrysen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Benzo(b)fluoranthen	mg/kg	0,05	0,05	DIN 38414-23 : 2002-02
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Benzo(a)pyren	mg/kg	0,05	0,05	DIN 38414-23 : 2002-02
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
PAK-Summe (nach EPA)	mg/kg	0,26 ×)		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12

Seite 1 von 3

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

13.03.2024 Datum Kundennr. 27056044

PRÜFBERICHT

3527624 P23519 Freising, Grundschule Lerchenfeld / EU Auftrag

Analysennr. 386191 Kunden-Probenbezeichnung KB4 0-0,8 m

	Einheit	Ergebnis	BestGr.	Methode
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter

gekennzeichnet

ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

DIN EN

gemäß

berichteten Verfahren sind

Eluat				
Eluaterstellung				DIN 38414-4 : 1984-10
Temperatur Eluat	°C	19,8	0	DIN 38404-4 : 1976-12
pH-Wert		7,7	0	DIN 38404-5 : 2009-07
elektrische Leitfähigkeit	μS/cm	115	10	DIN EN 27888 : 1993-11
Chlorid (CI)	mg/l	<2,0	2	DIN ISO 15923-1 : 2014-07
Sulfat (SO4)	mg/l	<2,0	2	DIN ISO 15923-1 : 2014-07
Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12 (H 37) Verfahren nach Abschnitt 4
Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-10
Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/l	<0,001	0,001	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/l	<0,001	0,001	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/l	<0,0002	0,0002	DIN EN ISO 12846 : 2012-08
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 13.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

> Seite 2 von 3 Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.03.2024 Kundennr. 27056044

PRÜFBERICHT

Auftrag 3527624 P23519 Freising, Grundschule Lerchenfeld / EU

Analysennr. 386191 Kunden-Probenbezeichnung KB4 0-0,8 m

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Grundbaulabor München Lilienthalallee 7 80807 München

> Datum 13.03.2024 Kundennr. 27056044

PRÜFBERICHT

3527624 P23519 Freising, Grundschule Lerchenfeld / EU

Auftrag Analysennr. Probeneingar Probenahme 386192 Probeneingang 07.03.2024 **Keine Angabe** Probenehmer Auftraggeber Kunden-Probenbezeichnung KB5 1,0-1,7 m

	Einheit	Ergebnis	BestGr.	Methode
Feststoff				

-	Probe
ğ	Kunde
Š	
dem	
Ħ	Fests
Б	
n Si	Analys
hre	Trocke
erfa	<u> </u>
e <	Cyanio
tiert	EOX
redi	Königs
ak	Arsen
cht	Blei (P
h in	Cadmi
Blic	Chrom
hlie	Kunfor
SSC	Kupfe
ï.	Nickel
tier	Queck
red	Zink (Z Kohlen
촳	Kohlen
18	
5:20	Kohler
702	Napht
5	Acena
Ě	
<u>80</u>	Acena
Ш	Fluore
Z C	Phena
äß [Anthra
em	Fluora
p S	Pyren
n Si	Benzo
hre	Chryse
erfa	
\geq	Benzo

Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
Trockensubstanz	%	° 77,3	0,1	DIN EN 14346 : 2007-03, Verfahrer A
Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	12	4	DIN EN ISO 11885 : 2009-09
Blei (Pb)	mg/kg	21	4	DIN EN ISO 11885 : 2009-09
Cadmium (Cd)	mg/kg	<0,2	0,2	DIN EN ISO 11885 : 2009-09
Chrom (Cr)	mg/kg	24	2	DIN EN ISO 11885 : 2009-09
Kupfer (Cu)	mg/kg	14	2	DIN EN ISO 11885 : 2009-09
Nickel (Ni)	mg/kg	15	3	DIN EN ISO 11885 : 2009-09
Quecksilber (Hg)	mg/kg	0,08	0,05	DIN EN ISO 12846 : 2012-08
Zink (Zn)	mg/kg	71,6	6	DIN EN ISO 11885 : 2009-09
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	100	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Acenaphthylen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Acenaphthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Fluoren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Phenanthren	mg/kg	0,14	0,05	DIN 38414-23 : 2002-02
Anthracen	mg/kg	0,07	0,05	DIN 38414-23 : 2002-02
Fluoranthen	mg/kg	0,41	0,05	DIN 38414-23 : 2002-02
Pyren	mg/kg	0,36	0,05	DIN 38414-23 : 2002-02
Benzo(a)anthracen	mg/kg	0,24	0,05	DIN 38414-23 : 2002-02
Chrysen	mg/kg	0,23	0,05	DIN 38414-23 : 2002-02
Benzo(b)fluoranthen	mg/kg	0,22	0,05	DIN 38414-23 : 2002-02
Benzo(k)fluoranthen	mg/kg	0,13	0,05	DIN 38414-23 : 2002-02
Benzo(a)pyren	mg/kg	0,23	0,05	DIN 38414-23 : 2002-02
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-02
Benzo(ghi)perylen	mg/kg	0,13	0,05	DIN 38414-23 : 2002-02
Indeno(1,2,3-cd)pyren	mg/kg	0,15	0,05	DIN 38414-23 : 2002-02
PAK-Summe (nach EPA)	mg/kg	2,31 ×)		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0.005	0.005	DIN EN 15308 : 2016-12

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.03.2024 Kundennr. 27056044

PRÜFBERICHT

Auftrag 3527624 P23519 Freising, Grundschule Lerchenfeld / EU

Analysennr. 386192

Kunden-Probenbezeichnung KB5 1,0-1,7 m

· ·	Einheit	Ergebnis	BestGr.	Methode
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluaterstellung				DIN 38414-4 : 1984-10
Temperatur Eluat	°C	20,6	0	DIN 38404-4 : 1976-12
nH-Wert		10 1	0	DIN 38404-5 · 2009-07

Eluaterstellung				DIN 38414-4 : 1984-10
Temperatur Eluat	°C	20,6	0	DIN 38404-4 : 1976-12
pH-Wert		10,1	0	DIN 38404-5 : 2009-07
elektrische Leitfähigkeit	μS/cm	160	10	DIN EN 27888 : 1993-11
Chlorid (CI)	mg/l	<2,0	2	DIN ISO 15923-1 : 2014-07
Sulfat (SO4)	mg/l	27	2	DIN ISO 15923-1 : 2014-07
Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12 (H 37) Verfahren nach Abschnitt 4
Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-10
Arsen (As)	mg/l	0,007	0,005	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/l	<0,001	0,001	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/l	0,001	0,001	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/l	<0,0002	0,0002	DIN EN ISO 12846 : 2012-08
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 13.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

Seite 2 von 3

DAKS

Deutsche
Akkreditierungsstelle
D-PL-14289-01-00

ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol "*) " gekennzeichnet

DIN EN

gemäß

berichteten Verfahren sind

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.03.2024 Kundennr. 27056044

PRÜFBERICHT

Auftrag 3527624 P23519 Freising, Grundschule Lerchenfeld / EU

Analysennr. 386192

Kunden-Probenbezeichnung KB5 1,0-1,7 m

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

SCHICHTENVERZEICHNISSE GRUNDWASSERMESSSTELLEN

Anlage 6

GWM1

Detailinformationen Bohrungen

7636BG016077 Stammdaten

Objekt-ID: 7636BG016077

Gemeinde: Freising [Freising]

TK25-Nr: 7636

TK25-Name: Freising Süd

Bohransatzhöhe [m NN]: 441.34

Endteufe [m]: 12.20

Bohrungsjahr: 1996

Hauptbohrverfahren: Bohrverfahren nicht bekannt

Grundwasserdaten

Grundwasser erreicht: Ja

Ruhewasserspiegel [m u. AP]: 1.25

7636BG016077 Detailinformationen Bohrungen

Schicht- und Teilschichtdaten

Bearbeitungsdatum: 1996

Qualität Schichtenverzeichnis: noch nicht beurteilt

Obergrenze [m]	Untergrenze [m]	Petrographie - Schichten	Petrographie - Teil- schichten	Gesteins- ansprache DIN 4022	Farbe	Zustand und Festigkeit	Feuchte- zustand	Stratigraphie	Schicht- bestandteil
0.00	0.50	Sedimentäres Lockergestein o.ä.		Mb				Quartär- Ablagerung	
0.50	1.60	Ton		T,fs,o		weich bis steif		Quartär- Ablagerung	
1.60	10.90	Kies		G,s,u'				Quartär- Ablagerung	
10.90	12.20	Sand		S,t/				Tertiär-Gestein	

Bilder

7636BG016077 Detailinformationen Bohrungen

Impressum:

Herausgeber:

Bayerisches Landesamt für Umwelt (LfU)

Bürgermeister-Ulrich-Straße 160

86179 Augsburg

Telefon: 0821 9071-0 Telefax: 0821 9071-5556

Postanschrift:

Bayerisches Landesamt für Umwelt

86177 Augsburg

E-Mail: poststelle@lfu.bayern.de Internet: www.lfu.bayern.de

Bearbeitung:

Bayerisches Landesamt für Umwelt (LfU)

Referenzen/Bildnachweis:

Bayerisches Landesamt für Umwelt (LfU)

Hintergrundkarte/Digitales Geländemodell

© Bayerische Vermessungsverwaltung

Mit Förderung durch:

Europäische Union Europäischer Fonds für regionale Entwicklung

GWM2

Detailinformationen Bohrungen

7636BG016076 Stammdaten

Objekt-ID: 7636BG016076

Gemeinde: Freising [Freising]

TK25-Nr: 7636

TK25-Name: Freising Süd

Bohransatzhöhe [m NN]: 441.82

Endteufe [m]: 12.00

Bohrungsjahr: 1996

Hauptbohrverfahren: Bohrverfahren nicht bekannt

Grundwasserdaten

Grundwasser erreicht: Ja

Ruhewasserspiegel [m u. AP]: 1.15

7636BG016076 Detailinformationen Bohrungen

Schicht- und Teilschichtdaten

Bearbeitungsdatum: 1996

Qualität Schichtenverzeichnis: verwendbar

Obergrenze [m]	Untergrenze [m]	Petrographie - Schichten	Petrographie - Teil- schichten	Gesteins- ansprache DIN 4022	Farbe	Zustand und Festigkeit	Feuchte- zustand	Stratigraphie	Schicht- bestandteil
0.00	0.40	Sedimentäres Lockergestein o.ä.		Mb				Quartär- Ablagerung	
0.40	0.70	Ton		T,s		weich		Quartär- Ablagerung	
0.70	10.90	Kies		G,s,u'				Quartär- Ablagerung	
10.90	12.00	Sand		S,g',t'				Tertiär-Gestein	

Bilder

7636BG016076 Detailinformationen Bohrungen

Impressum:

Herausgeber:

Bayerisches Landesamt für Umwelt (LfU)

Bürgermeister-Ulrich-Straße 160

86179 Augsburg

Telefon: 0821 9071-0 Telefax: 0821 9071-5556

Postanschrift:

Bayerisches Landesamt für Umwelt

86177 Augsburg

E-Mail: poststelle@lfu.bayern.de Internet: www.lfu.bayern.de

Bearbeitung:

Bayerisches Landesamt für Umwelt (LfU)

Referenzen/Bildnachweis:

Bayerisches Landesamt für Umwelt (LfU)

Hintergrundkarte/Digitales Geländemodell

© Bayerische Vermessungsverwaltung

Mit Förderung durch:

Europäische Union Europäischer Fonds für regionale Entwicklung